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The conformation and dynamics of a protein chain with hydrophobic and polar nodes are examined by the
bond-fluctuation model using Monte Carlo simulations on a cubic lattice. The minimal(nearest neighbor)
interaction leads to standard(self-avoiding walk) conformation, i.e., the scaling of the radius of gyrationRg

with the molecular weightN Rg~Ng with g.3/5. Specific interactions with longer range and higher strength
are needed to approach the native globular conformations withg,3/5. Relaxation into the globular ground
state shows a weak power-law decay, i.e.,Rg~ t−a, a,0.06–0.12.
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The structural stability of protein[1–4] chains has been
studied extensively in recent years[5–19], primarily by com-
putational methods. How the protein chain relaxes to its na-
tive conformations is one of the main questions addressed by
many researchers[5–19]. A native structure evolves into a
stable configuration(in steady state or equilibrium) as the
chain explores its conformational phase space and is ex-
pected to be globular in appropriate solvent conditions. A
protein is a large polymer consisting of 20 amino acids in a
specific sequence. These amino acid groups are similar ex-
cept for their side chains that distinguish their characteristics.
They are roughly divided into three categories: hydrophobic
sHd, polar sPd, and chargedsCd groups. Hydrophobic and
polar groups are considered to be the main constituents in
most coarse-grained models[20] and as the main constitu-
ents to describe the general characteristics of the protein.

In a coarse-grained model, a polymer chain is described
by nodes consecutively connected by bonds in a linear fash-
ion. Primary chain models[21,22] are(i) constant bond(CB)
chains with consecutive nodes connected by a constant bond
length on lattice,(ii ) bond-fluctuating(BF) chains with fluc-
tuating bond lengths on lattice, and(iii ) bead-spring(BS)
chains(and variants) off lattice. While the CB methods(i)
are efficient in probing the equilibrium properties such as
conformation of polymer chains, some microscopic details
are usually missed in many simulations due to limited de-
grees of freedom with fast but somewhat artificial segmental
dynamics. The off-lattice approaches(iii ), on the other hand,
are excellent in probing the microscopic details but generally
too slow to reach equilibrium due to the long relaxation time
in many complex systems, primarily because of large(prac-
tically infinite) degrees of freedom. In order to examine the
approach to asymptotic global properties, resorting to simpli-
fications[20] is almost unavoidable with either method un-
less one develops hybrid simulation approaches that incorpo-
rate the efficiency, effectiveness, and accuracy of both
methods[23–25]. The BF model(ii ) lies in between(i) and
(iii ) as it captures more microscopic details with a consider-
ably larger number of degrees of freedom than the CB model

(i) without significantly compromising the efficiency of a
discrete lattice. A chain node in the BF model occupies an
elementary cube, i.e., a node is represented by eight lattice
nodes in contrast to a single node in the CB model on a cubic
lattice [21]. Due to excluded volume constraints of the node
(cube) the bond length fluctuates between 2 andÎ10 with the
exception ofÎ8 and involves as many as 108 vectors[21] to
access it. Banavar and co-workers[8,9] have recently argued
that the thickness of the bonds that tether the nodes are very
important to correctly take into account structural features of
the protein. The bonds are usually very thin(negligibly
small) in both CB (i) and BS(iii ) models but they possess
fluctuating length and thickness in the BF model(ii ) which is
our choice here to study the conformation and dynamics of a
protein chain model.

Despite the limited degrees of freedom, the constant bond
lattice model has the advantages of simplicity and computa-
tional efficiency, which are useful for exploring issues such
as the energy landscape for stable structures of proteins. Us-
ing the CB description of theHP protein chain, Dill and
co-workers[10,11] have successfully described the core as-
sembly and protein folding into native structure via funnel
pathways[12]. Lattice models provide useful insight into
some of the basic characteristics of proteins[13,14]. The
dynamics of theHP chain and its relaxation to the native
structure is severely limited due to relatively few choices
(degrees of freedom) for the node to move. In addition, it is
not clear which combination of local segmental moves(i.e.,
kink-jump, crankshaft, reptation, etc.) [21] should be used to
capture appropriate dynamical modes[23–25]. Off-lattice
methods have contributed considerably in understanding the
evolution of a helices andb sheets[15–18] where micro-
scopic details are crucial. Incorporation of local interactions
with large numbers of degrees of freedom is very important
in such analysis around stable structures even with crude
approximations[20]. The large-scale dynamics involving re-
laxation from one structure to another is, however, severely
restricted due to the long time needed with small movement
of nodes in off-lattice simulations[23–25].
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Very recently, Chen and Chen[19] have used the bond-
fluctuation model to study the folding and native structures
of a specific protein, sensory rhodopsin I. They have used
interactions between nodes, empty sites(to represent the host
medium, i.e., a membrane between the water planes at the
opposite sides of the lattice), the bending energy for the
chain bonds, and the interaction energy with the water
planes. The simulations seem to be performed in three stages
with appropriate interactions to avoid the long relaxation
time and to capture desired segmental packing. This may
appear somewhatad hocor arbitrary, but necessary to over-
come the energy barriers and technical difficulties. We would
like to investigate the conformational relaxation and segmen-
tal mobility of proteins in a single domain(keeping the same
interaction throughout) in detail with a somewhat simpler set
of interactions without imposing the constraints of a specific
protein. We focus on the general features of a simplified
bond-fluctuating protein chain model by a large-scale com-
puter simulation study: we encounter major technical prob-
lem in reaching the native globular structure even with large-
scale simulations but we are able to show how the radius of
gyration relaxessRg~ t−ad with a revealing conversion of
conformational populations into their native state.

We consider a cubic lattice of sizeL3 with L=30–200.
The protein chains of lengthN=50–400 are considered with
hydrophobicsHd and polarsPd nodes connected by fluctuat-
ing bonds. A node occupies a cube(eight lattice sites) and
the bond lengthl in units of the lattice constant can vary,
l2=4, 5, 6, 9, 10 with 108 vectors connecting consecutive
monomers[21]. Initially, a chain of lengthN is randomly
placed in the lattice. Apart from the excluded volume effect,
we consider a short-range interactionsUd among nodes and
between nodes and empty sites which represent the effective
solventsSd components,

U = o
i

o
k

Jsi,kd, s1d

where the indexi runs over all constituentssH ,P,Sd and k
over all their neighboring sites within a ranger i of site i. The
interaction energy between the constituentssA,Bd at these
sites

JsA,Bd = eAB. s2d

The range of interaction is varied, i.e.,r i
2= l2, wherer i

2=4, 5,
10 represent nearest neighbor, next nearest neighbor sites,
etc. The set of interaction matrix elements

eHS= − ePS= e1, eHP = e2, eHH = ePP = e3, s3d

with a range of interaction strengthsei, i.e., e1=e2
=0,1,2,3, . . .;e3=0. The energy is measured in units ofkBT.
The chain nodes are moved randomly to their neighboring
sites(i.e., cubes) with the METROPOLISalgorithm and an at-
tempt to move each node once defines one Monte Carlo step
(MCS) as the time unit[21]. The simulation is performed for
a long time with a number of independent runs for averaging
the radius of gyrationRg and mean square displacements of
each nodeskRn

2ld and of their center of massskRc
2ld.

A variety of random and ordered sequences including
diblock copolymers ofH andP are considered for compari-
son. In general, the segmental and global motion of the pro-
tein chain depend on the fraction ofH andP groups and their
sequences. For example, a chain with primarilyH groups
tends to be less mobile than a chain dominated byP groups.
Hydrophobic interactions seem to pin down the configura-
tions leading to reduced mobility. The polar groups, on the
other hand, enhance the segmental mobility and therefore
accelerate the equilibration. The ordered sequences in blocks
of H’s and P’s have lower energy than random sequences.
However, the data presented below are generated from simu-
lations performed with equal numbers of hydrophobic and
polar groups in random sequences.

The protein chain equilibrates well with the short-range
interactionsr i

2=4d; therefore it is easier to study the scaling
of the radius of gyration with the molecular weightsNd. Fig-
ure 1 showsRg

2 versusN plots on a log-log scale. Accord-
ingly,

Rg
2 ~ Ng, s4d

with the exponentg.0.6. Note that the radius of gyration of
each chain has relaxed well which is confirmed by the varia-
tion of energy with the time steps(see inset figures). The
data for higher interaction strengthseid are more fluctuating,
but equilibration is achieved by increasing the simulation
time. Thus, with the minimal interactions, the equilibrium
conformation of theHP protein chain is more like a self-
avoiding walk than a compact globular form generally ex-
pected in a native state.

Figure 2 shows the variation of the gyration radius with
the time steps for higher rangesr i

2=5,10d with different in-
teraction strengths. For a relatively weak interactionse1=1d,
we see that the protein chain has relaxed well forr i

2=5. The
conformation is relatively spread as in Fig. 1. Increasing the
interaction strength toe1=2,3,5leads to the onset of relax-

FIG. 1. Rg
2 versus chain lengthN on 2003 samples for randomH

andP sequences. Nearest neighbor interactionsr i
2=4d with interac-

tion strengthse1=1 si1d, 5 si5d are used. Simulations are performed
for up to 107 time steps, each with 100 independent runs. Inset
figures show the variation ofRg

2 (for N=50–300) and energy(E for
N=300 for clarity) with the time steps.
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ation into conformations with smaller sizes(presumably the
globular). These relaxations show a power-law decay of the
radius of gyration,

Rg
2 = R0

2s1 + Ct−ad, s5d

whereR0 is the radius of gyration of the chain in globular
conformation andC is a constant. The decay exponenta
=0.06–0.12 depends on the range and magnitude of the in-
teraction. The decay of energy with the time steps is also
consistent with the relaxation of protein chains into their
globular structures.

It would be interesting to examine the variation of mean
square displacements with the time steps in order to probe
the segmental mobility as the protein chains relax into their
globular conformation. Figure 3 shows such a variation. We
see that for a relatively low interaction strengthse1=1d, both

nodes and their center of mass reach a diffusive power-law
behavior,

Rn,c ~ tn, s6d

with n.1/2 in the asymptotic regime. At higher interaction
strengthsse1=2,3,5d, on the other hand, a critical slowing
down seems to occur. It becomes difficult to describe the
dependence ofRn,c

2 on time by a single power law in our
observation time. While stronger interactions beyond the
nearest neighbor range are needed for the protein conforma-
tions to reach their globular states, the relaxation time is too
large to reach such states within our computational resources
at present. The necessity to resort to more simplifications(or
increased computational resources) is unavoidable.

With such a large amount of data, it is desirable to dig
further into the conformational relaxation. In Fig. 4, we
present the histogram of the radius of gyration. At a rela-
tively short timest=104d from the beginning of simulation,
we see a rather large spread in the magnitude ofRg from one
sample to anothersr i

2=5,e1=2d. Toward the end of the simu-
lation st=107d, on the other hand, values ofRg in most
samples have fallen to a very low valuesRg

2.30–40d. Such
a trend in population inversion from extended conformation
into a globular form is also seen with higher interaction
strengths. Thus, in order to analyze the native configuration,
one has to selectively use those configurations which have
reached their ground state. Such a crude sampling of the
ground state conformations(after 107 time steps) for differ-
ent chain lengths shows signs of globular conformations(see
the inset of Fig. 4). In summary, the conformation of the
protein chain depends on the interaction(i.e., nature of the
solvent) and the sequence. We are not able to distinguish
differences in data with different random sequences due to
large fluctuations. However, we have verified the changes by
examining blocked sequences. While the appropriate interac-

FIG. 2. Variation ofRg
2 with time steps on a log-log scale for

N=100 with next neighbor interactionsr i
2=5d with different inter-

action strengthsfe1=1 si1d ,2 si2d ,3 si3d ,5 si5dg and longer-range
interactionfr i

2=10 si6dg with strengthe1=1 si1d (down triangles).
The inset figure shows corresponding energy variation on a semilog
scale. Sample size 2003 is used with 100 independent runs.

FIG. 3. Mean square displacement of each nodekRn
2l and its

center of masskRc
2l (inset) versust for N=100 chain with random

sequences ofH andP. Statistics is the same as in Fig. 2.

FIG. 4. Conformational histogram, i.e., variation ofRg
2 with in-

dependent runs forN=100 with next neighbor interactionsr i
2=5d at

time stepst=104, strengthe1=2 si2d, andt=107, e1=2 si2d ,3 si3d.
Inset figure isRg

2 versusN plot on a log-log scale fore1=2 si2d with
each data point generated fort=107 MCSs with a selective sam-
pling of 100 independent runs;y-axis range is 35–80. Sample size
2003.
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tions are necessary to reach the native structures, the relax-
ation depends on the quality of the solvent. Despite a major
problem with a very long relaxation time, our simulation
reveals a clear population conversion(“funneling”) of HP
protein chains into their globular ground state. Relaxation of
the radius of gyration shows a slow power-law decay[Eq.
(5)] with a nonuniversal power-law exponentsad into a na-
tive structure withRg~Ng, g,3/5.
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